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Under consideration are the boundary-value problems of the theory of 
rotational conical flows and a precise scheme for the flow about a tri- 
angular wing. Several types of singular points are discussed. These 
arise with the joining of irrotational and rotational conical flows be- 

hind decaying shock waves. 

I.. For definiteness we will consider a plane triangular wing at an 
angle of attack 6 without side slip in the flow of nonviscous gas which 
has velocity WI, Mach number Ml > 1 and sound velocity al (Fig. 1). 

We will assume the edge of the wing to be in supersonic; since the 
conical flows which arise both above and below the wing do not interact 
they can be considered separately. In conical flows the velocity com- 
ponents, u, v, w, the entropy S, and pressure p depend on the angular 
variables which we take to be t = x/z, q = y/z. 

Ihe plane 5, 71 has the simple physical meaning that in the plane 
z = 1 of the xyz-space 6 and 7 correspond to coordinates x and y of that 
plane. Rotational conical flow is described by Equations (1.1) [ 1 I : 

L, = (u - &I) ( lJa + ; + “), + (v- VW) (q->, + (1.1) 
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These equations represent a combination of the equations of momentum, 
continuity and energy. Here ctt is the specific heat for constant voInme, 
y is the adiabatic index, a is the speed of sound: 

s = s [(r - 1) ~c,]-l, a2=az 
1 

- y (u2 _t_ 02 +jg - W12) 

For irrotational flow the conical potential is 

Here 4, the velocity potential, satisfies the equation 12 f 

Equation (1.2) is of elliptic (hyperbolic) type if the projection of 
the velocity vector on the plane perpendicular to the radius-vector at 
a point in the xyz-space is smaller (larger) than the local velocity of 

sound. 

From the form of the equations L, = 0, L, = 0 in the system (1.1) it 

follows ixmnediately that the -streamlines* 
(line of constant S) are determined by the 

equation 

dS 4 ~=L:--- 
u---w v-qw (1.3) 

yielding two characteristics of the system (1.1). 

Ihe remaining two characteristics of the system 

(1. If, as one can show, coincide with those of 
Equation (1.2). 

We now consider the picture of the flow about a triangular wing in 
the (, q-plane. Because of symnetry we need only illustrate the half of 
the flow for 6 > 0. The generally accepted scheme of the flow about the 

wing is given in Fig. 2 E3 1. The wing is represented by the segment 
0 - 3 (the z-axis lies in the plane of the wing). ‘Ibe enveloping Mach 
cones of the unperturbed flow, with vertices on the side edges of the 
wing, appear as the arcs 1 - 2 of the Mach cone with the vertex in the 
apex point of the wing (point 0 on Fig. 1) and the segment of straight 
line 2 - 3. For the flow about a sharp side edge there will be a Prandtl- 
Meyer flow which is extended until the velocity vector becomes parallel 
to the plane of the wing. This flow has a bundle of straight-line 



Some questions concerning the theory of conical flop 341 

characteristics of Equation (1.2) going through point 3. ‘lhe segment 
3 - 6 represents the boundary of the Prandtl- 
Meyer flow, after which there follows a singular iI 
flow which adjoins the surface of the wing. On 
the boundary of the common conical flow is the 
shock wave 2 - 7, which passes near the curvi- 
linear characteristic 2 - 6 of the Prandtl- 
Meyer flow, the straight-line characteristic 
5 - 6, and the arc of the Mach cone 5 - 4. For 
the flow under the wing there will be on the 
lateral edge a plane shock 3 - 9. After this 

follows a homogeneous flow. 'lhe region of the 

conical flow is bounded with a curvilinear 

shock 9- 10 and an arc 9 - 8 of the Mach cone 

of the homogeneous flow behind the shock 3 - 9. Fig. 2. 

“Possible” shocks were introduced in [3 1 that lie close to the Mach 
cones 1 - 2, 9 - 8, and with regard to these it was not clear whether or 
not it is possible to do without them in a mathematical formulation. In 
this paper the author refrains from introducing similar shocks. In what 
follows, consideration is given, to begin with. to the structure of the 
flow in the region of the point 9 (Fig. 2). the joining of the irrota- 
tional flow behind the Mach cone 9 - 8. and the rotational flow. behind 
the curvilinear shock 9- 10. It appears that the joining of these flows 
without a singular point is impossible. 

We take the coordinate axes so that the axis Oz is along the direction 
of the velocity of the homogeneous flow in the region 3 - 8 - 9 and the 
shock 3 - 9 is represented in the e, v-plane by a segment parallel to the 
t-axis (Fig. 3). 

In this system of coordinates the Mach cone 8 - 9 (Fig. 2), is re- 
presented by the circular arc 8 - 9 (Fig. 3) of radius 

where M is the Mach number behind shock 3 - 9: point 9 has the coordi- 

nates ( e a, vO); the velocity vector of the unperturbed flow has com- 

ponents (0, zll, 2~~); the velocity vector behind the shock 3 - 9 has com- 

ponents (0, 0, w,,); and the polar coordinates of point 9 will be taken 

as r = rO, 8 = 8,. 

In [ 2 I, for the conical potential F in the neighborhood of the Mach 

cone 8 - 9, the following expansion was found: 

F = w. -/- p (r,, - I-)~ + rI (r. - r)3 In (rO - r) -I- c (0) (r,, - r)” -f- . . . (1.4) 
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P= 2 (TWl;- 1) 
(MO2 - I)2 

MO4 

yl= w. 
6 (‘r + 1)’ 

(M0;;1YY3(Mu2 -I)- (7 -+ I)(2 -A!lM,Z)] 

The function c(O) is arbitrary; the dots denote terms of higher order 

in r0 - r. If at point 9 there is no singularity, then the function c(O) 

is regular at 8 = 8, and the behavior of the solution in the neighbor- 

hood of point 9 is determined by the second term in the expansion (1.4); 

in particular, F, = F, = F,, = FB, = 0, Frr = 2/S. Using the formulas 

LL = cc&F,.-- 
r 
sin 8F0, v = sin OF,. -j- + MIS BFe, w=F-rF, (1.5) 

we find at point 9 the derivatives of u, V, w along the streamline 9 - 0: 

In addition (as5 + qs, = 0 because the 

flow is irrotational. If one writes the 

equations for the coefficients of the dis- 

continuity of the derivatives of velocity 

components and s along the streamline 9 - 0 Fig. 3. 

(entropy characteristic of the system (1.111, 

then it is possible to convince oneself that 

for these equations point 9 does not have a singularity. It therefore 

follows that the rotational flow behind the shock 9 - 10 must at point 

9 possess a finite derivative. 'lbe conditions on the conical shock can 
be written in the form 14 I 

II = u1- q’l’, 2:=v1i_P, w = w1+ (@I’ - rl) P (1.7) 

where ( ul, vl, IO,), (u, v, w) are the velocity components before and 
after the shock, respectively, a1 is the velocity of sound before the 
shock, and 71 = ~(61 is the equation of the shock. 

In addition, the jump in s is determined by the jump in entropy S 

from the formula 
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where 

4*2%2 = [VI--u,ll'+ %(Er' - q)]" [I “- q’” -c (g,q’ - 7py 

Taking into account that for the shock 3 - 9 (Fig. 3) we have u1 = 
p'-= 0, from (1.7) we obtain the relations 

(1% 

Writing the equation of the shock 9 - 10 in the neighborhood of point 
9 in the form v = 'la - l<[- [a)' + . . . . where 1 is a constant, we get 
from (1.71, (1.8) the values of IL, u, w, and s along the shock 9 - 10. 
Differentiating with respect to [ and taking into account the finite de- 
rivative of u, v, w and s with respect to [ and I], we obtain at point 9 

The conditions for joining irrotational and rotational flow along the 
streamline 0 - 9 are contained in au equation for the derivatives of u, 
u, tu, s along 0 - 9. Because the characteristic 0- 9 of the system (1.1) 
is double, it is sufficient to require only the relations between the 
derivatives of u and v. The equation L, = 0 of (1.1) with consideration 
of (1.6) at point 9 can be represented in the form 

UC + 72, = 2p (1.11) 

Multiplying (1.11) by ~a 
(1.6) we obtain 

and subtracting from the second equation of 

E & - ?h& = cl (1.12) 

Inserting (l.lO) into (I-12) and expressing to, wO, ~#a in tern of 
VI, WI, and q1 after cancelling out 1, we obtain 

(1.13) 

[ 
n,2(1 + ?&2)- Tlo2~+(wI -1. 'lov1)2-/-~+(v1 - q&?,)2]): 

x (41 -t- Yo2) [(I + Q")Cx12 -j- (ZQ- ?$$J,)~j-+.2~,(U, ---%kP~)3) + T+ nov, x 
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Substituting the actual values of y = 1.4, v1 = 1.14497 al, ZD~ = 
3.29694 al, satisfying (1.91, into (1.13) we obtain not zero but 3.65; 
this shows that (1.13) is not a consequence of (1.9), that is, the smooth 
joining of flows is impossible. We note that the result remains in force 
if Frr at point 9 (Fig. 3) is an arbitrary constant and Fro = FBs = 0. 
The value 1 = 0 is also not taken on. 

‘lhe question of the joining of rotational and irrotational conical 
flow is generally analogous to plane supersonic gas flow, if the solution 
(1.2) at the point of juncture is of hyperbolic type. We consider, for 
instance, the flow about the symmetrical profile (Fig. 4a) and a sym- 
metrical triangular wing (Fig. 4b) in supersonic flow with the conditions 
that the edges of the conical wing are supersonic, the wings have a 
wedge-like form in the neighborhood of the leading edge, and the‘ angle 
of attack is equal to zero. l3y virtue of symmetry the flow can be 
qualitatively represented in the neighborhood of the leading edge for 
n andy> 0. 

Near the plane parts of the wings 0 - 1 there are plane shocks 0 - 2 
behind which there follow homogeneous flows which attach themselves to 
the wing surfaces (region O- 1 - 2). ‘Ihe curvature of the wings, begin- 
ning with point 1, leads to the curvature of the shock 2 - 5 and the 
formation of rotational flows. lhese combine along the streamline 2 - 4 
with the irrotational flow. Lines 1 - 2 and 2 - 3 are characteristics. 

In the case of plane flow the desired function can have as velocity 
components u, 21, and s = S[ c,y(y - 111 -I, where S is the entropy and 
the equations for these can be written in a form analogous to (1.1) 

L, = v (UV -- 2>.y) - CA, = 0, L, = us, + my = 0 

L, = (a2 - 22) u, - zm (uy 4 v,) + ((12 - b’) Z’g = 0 
(I .14) 

The condition of the matching of rotational and irrotational flow at 
point 2 (Fig. 4a) appears as the coincidence of derivatives of u, v and 
s along the streamline (2 - 4) 
(the entropy characteristic). 
After satisfying the conditions J 
on the shock wave (2 - 5) and 
the characteristic 2- 3 there 
remain two undetermined para- 
meters: the shock curvature at 
point 2 and the normal derivative - 
of u or v on the characteristic 
2 - 3 which makes it possible to 
equate the derivatives of u and v 
along 2 - 4 in rotational and 

X 

Fig; 

irrotational flow. In conical flow the desired functions are u, v, w, s. 
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Here the situation is analogous to the plane case, with the only differ- 
ence being that the streamline (2 - 41 (Fig. 4bb) appears as a double 
characteristic of the system (1.1) guaranteeing the closing of both s 
and w. For the case of flow behind the Mach cone 8- 9, (Fig. 31, the 
situation is more complicated, since the Mach cone appears simultaneously 
as a characteristic and as a parabolic line of Equation (1.2). 'Ihis leads 
to a special structure for the solution in this neighborhood and the im- 
possibility of combining rotational and irrotational flows without 
singular points. (There will be an analogous result in the case where the 
wing is curved. In this case the Mach cone 8- 9 (Fig. 2) is replaced by 
a characteristic curve which comes out from the parabolic point 9.) 'lhe 
author was unable to find such a singular point which would do away with 
the difficulties of matching the flows at point 9 (Fig. 2) (see section 
2). He has therefore considered other constructions for the flow at point 
9. At the present time, it has been possible to construct only one 
scheme which removes the difficulties at point 9. (Fig. 5). 

Point 9 is shifted along the shock wave 3-,9 and takes up the new 
position 9' (Fig. 5). 'lhrough point 9' passes an additional weak shock 
wave 9' - 13, which dies out at point li, which itself lies on the Mach 
cone. Behind the shock 9' - 11 there is a local Prandtl-Meyer flow be- 
ginning with the characteristic 9' - 12 and ending with the character- 
istic 9' - 13, which assures the matching of the flows on a line of con- 
tact discontinuity 9' - 0 ffor the matching of flows with contact dis- 
continuities one requires as many undetermined parameters as for the 
entropy characteristic 9 - 0). 

lhe curves 9' - 12, 9' - 14 are characteristics behind the shock 
9'- 11, the lines 9' - 16, 9' - 15 are characteristics of the homogeneous 

flow, up to the shock, 9' - 10 is a 
shock. 'lhe strength of the shock 

into a characteristic. The author 
. investigated the asymptotic behavior 

Fig. 5. 

bordering it cannot be connected 

6 of this-scheme for an-infinitely 
weak shock 3 - 9' (ul + 01 and found 
that the magnitude of the contact 
discontinuity is of higher order than 
vl. Replacing the shock 9' - 11 with 
a rectilinear characteristic is im- 
possible, because the simple wave 

with the flow behind the shock 9' - 20. 
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It is also impossible to join 9' with point 9, because in that case the 
shock 9' - 10 would be a rarefaction discontinuity for uul -, 0. The shock 
waves 3 - 9'j 9' - 10, 9' - 11 are incoming, 
but they are of different type. 'Ihe shock 
3 - 9' is plane, shocks 9' - 10, 9' - 11 are 
of the shock type generated in ax&symmetric 
flow about a circular cone. We note that the 
construction of the flow of the type at 
point 9' is also met in the supersonic flow 
about a double wedge 15 1, And so, the 
possible scheme of the flow on the bottom of 
the triangular wing is illustrated in Fig. 6 
(with notations corresponding to Fig. 2, 5). Fig. 6. 

The extension of the shock 9' - Pl is small 
and tends to zero when the angle of attack tends to zero. 

2. We shall now occupy ourselves with the construction of the solution 
in the neighborhood of point 11 (Fig. 6) and point 2 (Fig. 2). In this 
neighborhood begins the joining of the flow behind the Mach cone with the 
decaying shock wave. We shall be interested only in the leading terms of 
the solution in the neighborhood of these points and their structure. We 
shall start from point 11. Such a point also occurs in the flow about a 
triangular wing with subgonic edges, at the edge of a rectangular plate 
and so on, when the shock wave produced by the body weakens and trans- 
forms into the Mach cone which partially bounds the region. There is a 
perturbation of the flow about the body, on that side where there is an 
expansion of the undisturbed flow. We take the coordinate axes xyz so 
that the axis Oz will be directed parallel to the flow velocity on the 
Mach cone 8 - 11 (Fig. 6) and the point 11 will have coordinates (0, no) 
(Fig. 71. The Mach cone 8 - 11 can therefore be represented by the 

2 circumference ra = qa = @a - 1)-1'2 and 8 = 8, = z/2 at point 11. 

We will start from the expansion (1.4) of the 
hood of the Mach cone. A solution is sought with 
11 so we assume 

c(e)++-@-..., (6=e--eo, P>k>O) 

Designating p = (r. - F)@‘-’ and substituting 
in (1.41, we obtain 

solution in the neighbor- 
a singularity at point 

C 
v,p- arbitrary 

constants > 

c(6) and r0 - F = p fik 

F = w, -+- (VP3 $- . * .)63"-"+(~pq-pp3+...)@~+... 

that is, the solution has to be sought in the form 
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F = w,, + R (p) CFk-’ 

where for small p 

R (p) = vp3 $- . . . , 

{- F(p) 4Pk -I- . . . 

F(P) = PP’ + pp3 + . . - 

347 

(2.1) 

Substituting (2.1) in (1.2) and comparing coefficients of like powers 

of 6, we obtain p - 2, 1 < k < 2. 

Q (P) = R (P) ~1 ( 
c (1 + r& wOl*o' (7 + 1) 

1 

= 
aof > 

satisfying the equation 

(Pp2- Q')LY - Sk (k - 1) ~$7 + 3 (k - 1) (3k - 2) S-4 == 0 

and for small p 

D-t& 
52 (p) = 5 p3 -I- c,p + . . . 

where c2 is an arbitrary constraint. These solutions correspond to the 

flow along bent walls which adjoin the Mach cone. 'thus, for instance,with 

k = 3/2, we get the flow about wall with finite curvature. 

The solution in that case has the form 

ff 

Q(p) = c-%(t), t = cp 
8,’ 

v (t) = -A [(J 1 + t3 + tp - (J4 $ tq’“]3 + ’ 
11 .\. 

+ Et [(J/q _I_ t3 -/_ tp - (pq + t” - q’ij2 

Here c is a constant, depending on the 
JLC 

9’ 

7.0 

F 

e 

0 
curvature of the wall at the Mach cone. 

& 

Fig. 7. 
We shall now put v z 0, that is, R(p) = 0. 

'lhus from (1.2) we obtain the condition k 2 2. 

We consider the cast k > 2 (as we shall see, 

it corresponds to the singularity at point II). We select further terms 

of the expansion of c(0) in the form 

c(0) = -Q kz + & I116 -: VI -I- . . . 
eh 

where p, A, E, u1 are arbitrary constants. 

Thus the corresponding solution will have the form 

P = w0 + F (p) @a -;e- CD (p) i33k--2 $- T (I))+‘~ In 6 -1 R, (~)ti~~ -/- . . . (2.2) 
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where for small p 

F(p) =ppz-I.pp3+. . ., 0 (p) = hp3 + . . . 

T (p) = (rlk + E) p3 -I- . . ., R, (p) = r1p3 In p _i- v1p3 + . 

Substituting (2.2) into (1.2) and comparing the coefficients with 
similar powers of 6 and In 6, we obtain for F, @, T, R, the equations 

F” [21.,-,~ (wo2 - uo2) p - (1 -I+ 7.02) wor.02 (y + 1) F’] - u,,~F’ =O (2.3) 

@“[2r02 (wo2 - ao2)p - (1 -i_ ro2) woro2 (7 L l)F’] - (1 -1 ro2) w,,ro2 (y + I)FW- 

- a,*W = - $ [2/c (2k - 1) F - k (3k - 1) pF’ -i. k2p2F”] (2.4) 

and so on. lhese equations can easily be integrated in closed form and 
their solution satisfies the conditions for small p, for instance 

F(p) == $(l -+ 2cp)“/~-kp---1] 

where c >. 0 is an arbitrary constant. 

With large p we obtain asymptotic expressions of the form 

F(p) = zp2/z -j- . . ., 
31/2c 

@(P+*.k~pS”_+... (2.5) 
C 

1’ (p) - p3”, R,(p)-p’/z or p3, if k=4 

Changing over for large p in (2.2) to the variables 6 and 
5 = (re - r)rO-’ fls2(p = cro f12-k) we have 

‘lbe terms containing < are obtained from F(p) and Q(p). From (2.6) it 
follows that with p + 00 and finite 6 the solution has the form 

.Ir+, 
F=ro,-$--X(5)62 f-... (2.7) 

where for small 6 

x(6)=fi[c’*--~5”1”...] (2.8) 

Substituting (2.7) into (1.2) we get for x(c) the equation 

2~(1-i-25)~~-[1-~-25(k-t3)1~‘$-(~+2)(~+3)~=0 (2.9) 
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(This equation leads to the hypergeometric equation by replacing 2J=- t.) 
Substituting (2.8) into (2.9) we convince ourselves that (2.8) is the 
solution of (2.9) for small 6. Moreover, for k = 0, 2, 4, 6 the series 
(2.8) terminates and the solution can be obtained in closed form 

(2.10) 

For other k it is easy to find asymptotic expressions for x for large 
4. Starting with (2.9) we have 

“+g 
x(5)--5* 

‘5 +I 

or x(5)--5” 
(2 II) 

We consider the cases k = 4, k = 6. The question now arises whether, 
to obtain the leading term of these solutions in the quadrant neighbor- 
ing point ll(@> 0, r0 - r > O), the three first terms in the expansion 

(2.2) are to be retained: 

F = w0 f- F (p)P” -;- CD (p) fP--” 

For the approach to point 11 along the parabola r. - r = p’tik, 

ro - r = [r. fi2 (where p, 5 are fixed) the answer evidently is positive; 

investigation must be made only for 5 + 00. 

We transform in (2.7) to r. - r and 6, in place of 5 and 6; for k = 4 
we obtain 

F = w,, ~h,[6a(,“--)‘~~-~(‘.U-‘)‘~~] -I-. . . (&& (2.12) 

Substituting (2.12) into (1.2), we easily convince ourselves that 
(2.12) is the leading term as one approaches point 11 on an arbitrary 
path. For k = 6 we obtain 

(2.13) 

Substituting (2.13) in (1.2), we find that (2.13) is the leading term 
only for an approach to point 11 on the parabola 

6 = const (r, - rp, @<:% 

Therefore it is necessary in the expansion (2.7) to take another term 

F = w,, --I- x (Q W -I- T (C)W” -1 . . . (2.14 

‘Ihe equation for ‘PC&_) is easily integrable. Writing out the asymptotic 
representation of Y for 5 + 00 
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(2.15) 

Transferring in (2.14) to r. - rl, 6 for 4’ + =, we obtain 

Substituting (2.14) into (1.2), we assure ourselves that the terms 
written out in (2.16) give the leading term of the solution for an arbi- 
trary law of approach to the point 11. Moreover, for Fr and FB the lead- 
ing term is given by the term with x, and the term with Y gives the 
leading term for Fss. And so, for the case k = 6, to the first three 
terms in (2.2) it is necessary to add other terms which give Y(L) in 
the transformation from p to 6. At the same time it is importa;; that 
they are all generated by only the first two terms UJ,, + F(p) 6 in the 
expansion (2.2). Indeed, the term Q(p) ti3’-’ is related in the expansion 
(2.2) to F(p) Pk; together they give x(l) for pi + 00, and the term 

x(Z) 6 6 in the expansion (2.14) calls for the appearance of the term 
Y(4) 6 IO. 

It follows that the leading term wa + F(p) G2k for p = const leads to 
the leading term (2.16) in the neighborhood of the line 6= 0. This 
brings to attention the non-self-similarity of the leading term of the 
solution in the neighborhood of point 11. For the case k # 4, 6 when the 
analogous situation is examined it is possible to establish with the 
help of (2.11) that 

corresponding to the cases k = 4 and k = 6. 

We utilize the case k = 6 for the construction of the solution in the 
neigh~rhood of point 
shock wave 12 - 9’ in 
poet6 + . . . . where p,, 

‘Iben the condition 

s = d,W 

11 (Fig. 7). W e shall write the equation of the 
the neighborhood of point 11 in the form r. - r = 

< 0 is an unknown constant. 

on the shock (1.7) yields 

1. . . ‘, 
do = - $! Go (“o;61)s” 

0 
(2.17) 

and in the notation of the irrotational flow the condition for the velo- 
cities 

(2.H) 
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We shall seek the irrotational solution in the neighborhood of the 

point 11, satisfying the conditions on the Mach cone and the condition 

(2.18) on the shock wave. The leading term of this solution will be, as 

is shown below, the leading term of the solution for the velocity of the 

rotational problem. We seek F in the neighborhood of the shock 11 - 9' 
in the form of the expansion 

F = w. + F, (p) fPL + O1 (p) @k--2 + . . . , p = (q, - r) Wk, k=6 (2.19) 

that is, the form of the expansion is the same as in the neighborhood of 

the Mach cone, only the arbitrary constants in F,(p) have to be deter- 

mined from (2.18). For Fl(p) we obtain 

F,(p) = -z [ (* + 2c1P)a';1(1 + 2clpo)"'z + p _ p,] 
ccl_ B,;o,~ 

2g k(k-2) 
a. (P) = 15)/~‘oP6’~f.. .) 

1 
FI (P) = - & p” + . _ . for p + 00 

Transforming to 6 and [ we obtain 

where 

k+3 
F 5 w, + ~1 (C)S” + . . . 

For [+ m, after the substitution k = 6, we obtain 

Transforming to ra - r,, 6 and taking into account that 6 < 0 for the 

shock, we obtain 

F = wo - h, 
[ 
(r. - r)“W3- & (r. - r)w ] -+ h12so ; (r. -r)4+2+. . . (2.20) 

Comparing (2.20) and (2.16) we find that (2.20) is an analytical con- 

tinuation of (2.16) for 6 < 0, if c1 = c. In the same manner, the lead- 
ing term of the rotational solution is constructed, satisfying the con- 

dition on the Mach cone and the shock, and containing the undetermined 

parameter pb, characterizing the curvature of the shock. Now we substi- 

tute the determined values of velocity in L, = 0 (1.1) and we determine 

s. lhen we establish that the derivative of s in L, = 0 (1.1) will be 
small in comparison with the derivatives of the velocities. 'Ihis means 

that the leading term of the solution for the velocities coincides for 

the rotational and irrotational problem. After the transformation to 
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polar coordinates and after discarding the small terms, L, = 0 takes the 
form 

St- - y-j& Fe% = 0 (2.23) 

where for Fe it is necessary to take the leading term in the form 

Fn = al1 f*=', (P> - 6 PF,’ (~11 + w5 [16@, (P) - 6~@>,’ (PII 

After transformation to new independent variables p and 8 = 8 - 8,, 
(2.21) becomes 

s,[1 - 6=6 pA (p)- PO6 pB (p)] + st, [WA (p) + e21B (p)] = 0 (2.22) 

(A (P) = & ~QWP)-~PF,’ (PM, B (P) = & 116 @I (P) - 6 P@,’ (P)I) 

We seek the solution (2.22) in the form 

S (p, s) = 5 S=(p) elT+n 
n=1 

where (2.17) gives sI(pb) = d,. From the recursion relations for s,,(p) 
it is easy to show that sl(p) I do and the order of the growth of 
s,(p) -+ = does not exceed p n-25/4; from this it follows that, for p + 00 

and finite 5 = p 6’r,-‘, s is represented in the form 

s = 5 J&(G) *x+-n 
TF=O 

p. (0) = do, p1 (5) - P, p2 (5) - P, PS (5) - 5’“, P4 (5) - PO, + + ., for C --, 0 

After transforming to the independent variables 4, @ instead of p, 6, 
Equation (2.22) is transformed into the form 

where a and b are determined from the relation 

A (P) - aPa’% B(p) - bp’ia forp4oo 

With the help of the recurrence relation for p,(c) obtained from 
Equation f2.23), it is possible to establish that for < + 00 the order of 
growth of p,(c) do not exceed <Tni2, from which it follows that for 
smallr 

s'= 61s 5 d,ic" (t =: (pg - T)'~%-~, d,= const) 
n=o 
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This means that for finite r the solution is represented in the form 

s==W*Q(Z)+..., Q (0) = do 

Transforming in (2.23) to the independent variables 

++br)-ks=O 

From here for Q(r) we easily find 

r and %J, we obtain 

Q’ (a + Irz) - l8bQ = 0, 

From this 

Q (z) = do (1 + +br)” 

s(r,8)=d,(1+~6r)‘“8’*+...=d, B++b(r,-+‘*+... 
I 1 (2.24) 

From (2.24) it follows, in part, that the equation of the streamline 

s=Ois 

One csn also obtain, by means of immediate integration of the equation 
defining the streamline (2.16) 

d# 
dr = 

The representation of s for finite p, <, r shows that the derivatives 
of s are small in comparison with the velocity derivatives in L, = 0. 

We shall now concern ourselves with an investigation of the solutions 
in the region of the point 2 (Fig. 2). We take the system of coordinates 
in such a way that the z-axis is directed along the velocity on the Mach 
cone 1 - 2, and the characteristic 2 - 3 is taken to be parallel to the 
C-axis (Fig. 8). For an approach to point 2 from the left (t= - 0) and 
from the right (4= + 0) we have two different singularities. For the 
construction of the singularity for c= - 0 we use the expansion (2.2) 
for k = 2. The variable p for k = 2 is p = <r,,, and the equation for 
Y(T), which is defined by the relation F(p) = 2p ro2Y(<), will be written 
in the form 

(25 + 452-- Y’) Y”--(105 + 1) Y’ -/- 12Y = 0 (2.25) 

In the case Y = l/2 5 2 + Xc 3 + , . . 0 = const) for small 5. Equation 
(2.25) cannot be integrated in closed form, but the character of the 
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asymptotic behavior of Y for 5. + = is not hard to determine. 'Ihere are 

two possible types of asymptotic representations: 

-f+f+G for 5-m (a,, n2, a3 = const) 

'Ihere exist also such X that for some 4 < m 

Fig. 8. 

We are interested in the solutions with asymp- 

totic behavior Y * a1c2+ a2c3. For these it is 

known that there exists at least one such solu- 

tion Y= l/2 c2, and there evidently exist also other solutions of this 

type. On the streamline coming out of point 2([+ -) these solutions will 

give 

jYj<CO, !Y’j<Oo, iY”I=cc 

u = -2p$(r,-rp+. , .) v = - 4pn, (r” - r) + . . . 

w = w. - rev -$- . . . (2.26) 

For the construction of the solution for 5 = + 0 we write the equa- 

tion of the shock wave 2 - 7 in the region of point 2 in the form 

9 = ?o - 1c2 + . . . . where q = r. and 1 is an unknown constant. Utilizing 

the solution for the simple wave in the region of the parabolic line 

14 1 from (1.7), we find the velocity components behind the shock 2 - 7 

u = _ 1.2 16wo (Mo2- 1) ajz 
r+l MO* (I - JMM,2 -.l) E” + . . . 

ho v=-_l- (MO2 - 1) % 

cr+1 MO4 (41 - 3 1/M,” - 1) E2 + . . . 

(2.27) 

w=wn-q)v+..., s = 0 (E”) 

We shall seek the solution behind the shock wave 2 - 7 in the form 

u=u(4%“+ . . . . v=v(6)E2+ . ..) w=w,+w(a)fZ-j- . . . . 

S=S(6)E6f..., % - rl 
0=-p--% 

Substituting u, v, w, and s in the system (1.11, we find that the 

leading term of the solution will be irrotational and u(a), v(u), W(Q) 

can be expressed in terms of one function X(o) 
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u (4 = 7 + 1 
2w, ‘M$; IIS (2X _ 6X’), v (4 = - ,ypJ 

wo (MO2 -If/” x, 

MOO 

w (4 = - 9ov (4 
(2.28) 

and the function X(a) satisfies the equation 

(X’ + 20 - 402) X” + (100 - 4) X’ - 12x = 0 (2.29) 

?he conditions (2.27) yield that, for value D = oO, corresponding to 

the shock wave 

x (qJ = 602, X’ (Go) = 260 (40, - 3) (O<ao<1) (2.30) 

For u + 00 there are possible two types of asymptotic expressions: 

x (a) - b,02 + b2&, X (a) - $ + b36 (bl, b2, b3 = con&) 

For the problem under consideration it is appropriate to use the 
solution of the first type. In particular, Equation (2.29) has a family 
of exact solutions 

X = a2 + b, (d/z + ;b2 ) 

which for b, = - 32/27d 3 and u0 = l/3 satisfies conditions (2.30). 
Evidently, there exist solutions with bl f 1. On the streamline coming 
out of point 2 (Fig. 8) (a + -) these solutions give 

u=b 

v=__b J&("02-i12 

lrti 
MO4 (~o--'I)+.**, zu = w~--~~v $- . . . (2.31) 

Comparing (2.26) and (2.31) one can come to the conclusion that for 
the matching of the flows it is necessary that al, aZ, which depend on A, 

and b,, b,, which depend on u,,, have equal coefficients for like powers 

of ‘lo - ?, F. -. F. ‘Ibis leads to a system of equations defining A and oo, 
which, evidently, can be constructed and solved by the numerical inte- 
gration of (2.25) and (2.29). It is then possible to make a final de- 
duction about the possibility of the matching of the flows at point 2. 

‘lhe singularities considered above, and more complicated ones, found 
by the author, do not solve the problem of the matching of the flows at 
point 9 (Fig. 3). We can only say that the solution of (1.1) behind the 
shock 9 - IO, we have taken in the form u = ~($1 ca + . . , , v = u($) ca + 
. . .) w = w. + w(q9 co + . . . . where 6, qA are the polar coordinates on the 
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6, 11, beginning in point 9. a > 0 is a constant. 

'Ihe author would like to thank S.V. Falkovich for valuable comments. 
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